67.4.4 problem 5.1 (d)

Internal problem ID [16373]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.1 (d)
Date solved : Thursday, October 02, 2025 at 01:24:08 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=1+\left (y x +3 y\right )^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 57
ode:=diff(y(x),x) = 1+(x*y(x)+3*y(x))^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\operatorname {BesselY}\left (-\frac {1}{4}, \frac {\left (x +3\right )^{2}}{2}\right ) c_1 -\operatorname {BesselJ}\left (-\frac {1}{4}, \frac {\left (x +3\right )^{2}}{2}\right )}{\left (\operatorname {BesselY}\left (\frac {3}{4}, \frac {\left (x +3\right )^{2}}{2}\right ) c_1 +\operatorname {BesselJ}\left (\frac {3}{4}, \frac {\left (x +3\right )^{2}}{2}\right )\right ) \left (x +3\right )} \]
Mathematica. Time used: 0.316 (sec). Leaf size: 351
ode=D[y[x],x]==1+(x*y[x]+3*y[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+3 \operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )-\left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (\frac {7}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+4 c_1 \left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (-\frac {7}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+12 c_1 \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )-4 c_1 \left ((x+3)^3\right )^{2/3} \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )}{2 (x+3)^3 \left (\operatorname {Gamma}\left (\frac {7}{4}\right ) \operatorname {BesselJ}\left (\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+4 c_1 \operatorname {Gamma}\left (\frac {5}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )\right )}\\ y(x)&\to \frac {-\left ((x+3)^3\right )^{2/3} \operatorname {BesselJ}\left (-\frac {7}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )-3 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )+\left ((x+3)^3\right )^{2/3} \operatorname {BesselJ}\left (\frac {1}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )}{2 (x+3)^3 \operatorname {BesselJ}\left (-\frac {3}{4},\frac {1}{2} \left ((x+3)^3\right )^{2/3}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(x*y(x) + 3*y(x))**2 + Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list