67.9.23 problem 14.2 (m)

Internal problem ID [16571]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.2 (m)
Date solved : Thursday, October 02, 2025 at 01:36:32 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\sin \left (\ln \left (x \right )\right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (\ln \left (x \right )\right )+c_2 \cos \left (\ln \left (x \right )\right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos (\log (x))+c_2 \sin (\log (x)) \end{align*}
Sympy. Time used: 0.096 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\log {\left (x \right )} \right )} + C_{2} \cos {\left (\log {\left (x \right )} \right )} \]