67.9.24 problem 14.2 (n)

Internal problem ID [16572]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 14. Higher order equations and the reduction of order method. Additional exercises page 277
Problem number : 14.2 (n)
Date solved : Thursday, October 02, 2025 at 01:36:32 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\frac {\cos \left (x \right )}{\sqrt {x}} \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 17
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(x^2-1/4)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \sin \left (x \right )+c_2 \cos \left (x \right )}{\sqrt {x}} \]
Mathematica. Time used: 0.02 (sec). Leaf size: 39
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-1/4)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{-i x} \left (2 c_1-i c_2 e^{2 i x}\right )}{2 \sqrt {x}} \end{align*}
Sympy. Time used: 0.136 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (x**2 - 1/4)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} J_{\frac {1}{2}}\left (x\right ) + C_{2} Y_{\frac {1}{2}}\left (x\right ) \]