67.10.11 problem 15.4

Internal problem ID [16593]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 15. General solutions to Homogeneous linear differential equations. Additional exercises page 294
Problem number : 15.4
Date solved : Thursday, October 02, 2025 at 01:36:47 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x y^{\prime \prime }-y^{\prime }+4 x^{3} y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x*diff(diff(y(x),x),x)-diff(y(x),x)+4*x^3*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sin \left (x^{2}\right )+c_2 \cos \left (x^{2}\right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 20
ode=x*D[y[x],{x,2}]-D[y[x],x]+4*x^3*y[x]==0; 
DSolve[ode,y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos \left (x^2\right )+c_2 \sin \left (x^2\right ) \end{align*}
Sympy. Time used: 0.115 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**3*y(x) + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} J_{\frac {1}{2}}\left (x^{2}\right ) + C_{2} Y_{\frac {1}{2}}\left (x^{2}\right )\right ) \]