67.10.12 problem 15.5 (a)

Internal problem ID [16594]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 15. General solutions to Homogeneous linear differential equations. Additional exercises page 294
Problem number : 15.5 (a)
Date solved : Thursday, October 02, 2025 at 01:36:48 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+4 y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=3 \\ y^{\prime }\left (0\right )&=8 \\ y^{\prime \prime }\left (0\right )&=4 \\ \end{align*}
Maple. Time used: 0.047 (sec). Leaf size: 18
ode:=diff(diff(diff(y(x),x),x),x)+4*diff(y(x),x) = 0; 
ic:=[y(0) = 3, D(y)(0) = 8, (D@@2)(y)(0) = 4]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 4+4 \sin \left (2 x \right )-\cos \left (2 x \right ) \]
Mathematica. Time used: 39.054 (sec). Leaf size: 53
ode=D[y[x],{x,3}]+4*D[y[x],x]==0; 
ic={y[0]==3,Derivative[1][y][0] ==8,Derivative[2][y][0] ==4}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x2 (4 \cos (2 K[1])+\sin (2 K[1]))dK[1]-\int _1^02 (4 \cos (2 K[1])+\sin (2 K[1]))dK[1]+3 \end{align*}
Sympy. Time used: 0.091 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) 
ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): 8, Subs(Derivative(y(x), (x, 2)), x, 0): 4} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 4 \sin {\left (2 x \right )} - \cos {\left (2 x \right )} + 4 \]