Internal
problem
ID
[16763]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.11
(d)
Date
solved
:
Thursday, October 02, 2025 at 01:38:37 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-5*D[y[x],x]+6*y[x]==x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 + 6*y(x) - 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)