67.15.46 problem 22.11 (e)

Internal problem ID [16764]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 22. Method of undetermined coefficients. Additional exercises page 412
Problem number : 22.11 (e)
Date solved : Thursday, October 02, 2025 at 01:38:37 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{-8 x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 23
ode:=diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = 4*exp(-8*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{3 x} c_2 +{\mathrm e}^{2 x} c_1 +\frac {2 \,{\mathrm e}^{-8 x}}{55} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 31
ode=D[y[x],{x,2}]-5*D[y[x],x]+6*y[x]==4*Exp[-8*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2 e^{-8 x}}{55}+c_1 e^{2 x}+c_2 e^{3 x} \end{align*}
Sympy. Time used: 0.136 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(6*y(x) - 5*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 4*exp(-8*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{2 x} + C_{2} e^{3 x} + \frac {2 e^{- 8 x}}{55} \]