Internal
problem
ID
[16798]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.15
(g)
Date
solved
:
Thursday, October 02, 2025 at 01:39:03 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-5*x*diff(y(x),x)+9*y(x) = 6*x^3; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-5*x*D[y[x],x]+9*y[x]==6*x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*x**3 + x**2*Derivative(y(x), (x, 2)) - 5*x*Derivative(y(x), x) + 9*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)