Internal
problem
ID
[16799]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
22.
Method
of
undetermined
coefficients.
Additional
exercises
page
412
Problem
number
:
22.15
(h)
Date
solved
:
Thursday, October 02, 2025 at 01:39:04 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)+4*y(x) = 64*x^2*ln(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+5*x*D[y[x],x]+4*y[x]==64*x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-64*x**2*log(x) + x**2*Derivative(y(x), (x, 2)) + 5*x*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)