67.18.6 problem 27.1 (f)

Internal problem ID [16877]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 27. Differentiation and the Laplace transform. Additional Exercises. page 496
Problem number : 27.1 (f)
Date solved : Thursday, October 02, 2025 at 01:40:03 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y&=\sin \left (2 t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=3 \\ y^{\prime }\left (0\right )&=5 \\ \end{align*}
Maple. Time used: 0.104 (sec). Leaf size: 20
ode:=diff(diff(y(t),t),t)+4*y(t) = sin(2*t); 
ic:=[y(0) = 3, D(y)(0) = 5]; 
dsolve([ode,op(ic)],y(t),method='laplace');
 
\[ y = \frac {21 \sin \left (2 t \right )}{8}-\frac {\cos \left (2 t \right ) \left (-12+t \right )}{4} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 108
ode=D[y[t],{t,2}]+4*y[t]==Sin[2*t]; 
ic={y[0]==3,Derivative[1][y][0] ==5}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\sin (2 t) \int _1^0\frac {1}{4} \sin (4 K[2])dK[2]+\sin (2 t) \int _1^t\frac {1}{4} \sin (4 K[2])dK[2]+\cos (2 t) \left (-\int _1^0-\frac {1}{2} \sin ^2(2 K[1])dK[1]\right )+\cos (2 t) \int _1^t-\frac {1}{2} \sin ^2(2 K[1])dK[1]+3 \cos (2 t)+5 \sin (t) \cos (t) \end{align*}
Sympy. Time used: 0.071 (sec). Leaf size: 20
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) - sin(2*t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 3, Subs(Derivative(y(t), t), t, 0): 5} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (3 - \frac {t}{4}\right ) \cos {\left (2 t \right )} + \frac {21 \sin {\left (2 t \right )}}{8} \]