Internal
problem
ID
[16878]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
27.
Differentiation
and
the
Laplace
transform.
Additional
Exercises.
page
496
Problem
number
:
27.1
(g)
Date
solved
:
Thursday, October 02, 2025 at 01:40:03 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = 3*Heaviside(t-2); ic:=[y(0) = 0, D(y)(0) = 5]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*y[t]==UnitStep[t-2]; ic={y[0]==0,Derivative[1][y][0] ==5}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - 3*Heaviside(t - 2) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 5} dsolve(ode,func=y(t),ics=ics)