Internal
problem
ID
[17033]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
36.
The
big
theorem
on
the
the
Frobenius
method.
Additional
Exercises.
page
739
Problem
number
:
36.2
(f)
Date
solved
:
Thursday, October 02, 2025 at 01:42:08 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(2*x+1)*diff(diff(y(x),x),x)+x*diff(y(x),x)+(4*x^3-4)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1+2*x)*D[y[x],{x,2}]+x*D[y[x],x]+(4*x^3-4)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(2*x + 1)*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (4*x**3 - 4)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)