67.26.7 problem 36.2 (g)

Internal problem ID [17034]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 36. The big theorem on the the Frobenius method. Additional Exercises. page 739
Problem number : 36.2 (g)
Date solved : Thursday, October 02, 2025 at 01:42:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.025 (sec). Leaf size: 48
Order:=6; 
ode:=4*x^2*diff(diff(y(x),x),x)+8*x*diff(y(x),x)+(1-4*x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1+x +\frac {1}{4} x^{2}+\frac {1}{36} x^{3}+\frac {1}{576} x^{4}+\frac {1}{14400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (\left (-2\right ) x -\frac {3}{4} x^{2}-\frac {11}{108} x^{3}-\frac {25}{3456} x^{4}-\frac {137}{432000} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_2}{\sqrt {x}} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 124
ode=4*x^2*D[y[x],{x,2}]+8*x*D[y[x],x]+(1-4*x)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_1 \left (\frac {x^5}{14400}+\frac {x^4}{576}+\frac {x^3}{36}+\frac {x^2}{4}+x+1\right )}{\sqrt {x}}+c_2 \left (\frac {-\frac {137 x^5}{432000}-\frac {25 x^4}{3456}-\frac {11 x^3}{108}-\frac {3 x^2}{4}-2 x}{\sqrt {x}}+\frac {\left (\frac {x^5}{14400}+\frac {x^4}{576}+\frac {x^3}{36}+\frac {x^2}{4}+x+1\right ) \log (x)}{\sqrt {x}}\right ) \]
Sympy. Time used: 0.291 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 8*x*Derivative(y(x), x) + (1 - 4*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = \frac {C_{1} \left (\frac {x^{5}}{14400} + \frac {x^{4}}{576} + \frac {x^{3}}{36} + \frac {x^{2}}{4} + x + 1\right )}{\sqrt {x}} + O\left (x^{6}\right ) \]