Internal
problem
ID
[17402]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
38
Date
solved
:
Thursday, October 02, 2025 at 02:17:03 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
With initial conditions
ode:=t^3+y(t)^2*(t^2+y(t)^2)^(1/2)-t*y(t)*(t^2+y(t)^2)^(1/2)*diff(y(t),t) = 0; ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=(t^3+y[t]^2*Sqrt[t^2+y[t]^2])-(t*y[t]*Sqrt[t^2+y[t]^2])*D[y[t],t]==0; ic={y[1]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**3 - t*sqrt(t**2 + y(t)**2)*y(t)*Derivative(y(t), t) + sqrt(t**2 + y(t)**2)*y(t)**2,0) ics = {y(1): 1} dsolve(ode,func=y(t),ics=ics)
TypeError : cannot determine truth value of Relational: 18*C1*t**6 < 18*t**6