68.7.39 problem 39

Internal problem ID [17403]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 39
Date solved : Thursday, October 02, 2025 at 02:17:14 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} y^{3}-t^{3}-t y^{2} y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=3 \\ \end{align*}
Maple. Time used: 0.102 (sec). Leaf size: 14
ode:=y(t)^3-t^3-t*y(t)^2*diff(y(t),t) = 0; 
ic:=[y(1) = 3]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \left (-3 \ln \left (t \right )+27\right )^{{1}/{3}} t \]
Mathematica. Time used: 0.128 (sec). Leaf size: 22
ode=(y[t]^3-t^3)-(t*y[t]^2)*D[y[t],t]==0; 
ic={y[1]==3}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \sqrt [3]{3} t \sqrt [3]{9-\log (t)} \end{align*}
Sympy. Time used: 1.011 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**3 - t*y(t)**2*Derivative(y(t), t) + y(t)**3,0) 
ics = {y(1): 3} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \sqrt [3]{t^{3} \left (27 - 3 \log {\left (t \right )}\right )} \]