Internal
problem
ID
[17491]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.1,
page
141
Problem
number
:
46
Date
solved
:
Thursday, October 02, 2025 at 02:24:41 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(t),t),t)+b(t)*diff(y(t),t)+c(t)*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+b[t]*D[y[t],t]+c[t]*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") y = Function("y") b = Function("b") c = Function("c") ode = Eq(b(t)*Derivative(y(t), t) + c(t)*y(t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)
TypeError : cannot determine truth value of Relational: t > t