Internal
problem
ID
[17492]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.1,
page
141
Problem
number
:
47
Date
solved
:
Thursday, October 02, 2025 at 02:24:42 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using reduction of order method given that one solution is
With initial conditions
ode:=diff(diff(y(t),t),t)+b*diff(y(t),t)+c*y(t) = 0; ic:=[y(Pi) = 0, y(2*Pi) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]+b*D[y[t],t]+c*y[t]==0; ic={y[Pi]==0,y[2*Pi]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(b*Derivative(y(t), t) + c*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(pi): 0, y(2*pi): 0} dsolve(ode,func=y(t),ics=ics)