68.15.12 problem 12

Internal problem ID [17738]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 12
Date solved : Thursday, October 02, 2025 at 02:27:32 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=x^2*diff(diff(y(x),x),x)+7*x*diff(y(x),x)+9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 +c_2 \ln \left (x \right )}{x^{3}} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]+7*x*D[y[x],x]+9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {3 c_2 \log (x)+c_1}{x^3} \end{align*}
Sympy. Time used: 0.095 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 7*x*Derivative(y(x), x) + 9*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + C_{2} \log {\left (x \right )}}{x^{3}} \]