68.15.13 problem 13

Internal problem ID [17739]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 13
Date solved : Thursday, October 02, 2025 at 02:27:33 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=x^3*diff(diff(diff(y(x),x),x),x)+22*x^2*diff(diff(y(x),x),x)+124*x*diff(y(x),x)+140*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \,x^{8}+c_2 \,x^{3}+c_3}{x^{10}} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 24
ode=x^3*D[y[x],{x,3}]+22*x^2*D[y[x],{x,2}]+124*x*D[y[x],x]+140*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_3 x^8+c_2 x^3+c_1}{x^{10}} \end{align*}
Sympy. Time used: 0.140 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 22*x**2*Derivative(y(x), (x, 2)) + 124*x*Derivative(y(x), x) + 140*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {C_{2}}{x^{8}} + \frac {C_{3}}{x^{5}}}{x^{2}} \]