Internal
problem
ID
[17766]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
40
Date
solved
:
Thursday, October 02, 2025 at 02:27:55 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = ln(x); ic:=[y(1) = 2, D(y)(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==Log[x]; ic={y[1]==2,Derivative[1][y][1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + 2*y(x) - log(x),0) ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 0} dsolve(ode,func=y(x),ics=ics)