Internal
problem
ID
[17767]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.7,
page
195
Problem
number
:
41
Date
solved
:
Thursday, October 02, 2025 at 02:27:56 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=4*x^2*diff(diff(y(x),x),x)+y(x) = x^3; ic:=[y(1) = 1, D(y)(1) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=4*x^2*D[y[x],{x,2}]+y[x]==x^3; ic={y[1]==1,Derivative[1][y][1]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + 4*x**2*Derivative(y(x), (x, 2)) + y(x),0) ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): -1} dsolve(ode,func=y(x),ics=ics)