Internal
problem
ID
[17889]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
51
Date
solved
:
Thursday, October 02, 2025 at 02:29:16 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = exp(t)*ln(t); ic:=[y(1) = 1, D(y)(1) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]-2*D[y[t],t]+y[t]==Exp[t]*Log[t]; ic={y[1]==1,Derivative[1][y][1]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - exp(t)*log(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(1): 1, Subs(Derivative(y(t), t), t, 1): 0} dsolve(ode,func=y(t),ics=ics)