68.18.46 problem 53

Internal problem ID [17890]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 53
Date solved : Thursday, October 02, 2025 at 02:29:17 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 t y^{\prime }+t^{2} y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 20
ode:=diff(diff(y(t),t),t)-2*t*diff(y(t),t)+t^2*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = {\mathrm e}^{\frac {t^{2}}{2}} \left (c_1 \cos \left (t \right )+c_2 \sin \left (t \right )\right ) \]
Mathematica. Time used: 0.019 (sec). Leaf size: 39
ode=D[y[t],{t,2}]-2*t*D[y[t],t]+t^2*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{2} e^{\frac {1}{2} t (t-2 i)} \left (2 c_1-i c_2 e^{2 i t}\right ) \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*y(t) - 2*t*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
False