Internal
problem
ID
[18062]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
152
Date
solved
:
Thursday, October 02, 2025 at 02:36:41 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=2*x*diff(y(x),x)-y(x) = 1-2/x^(1/2); ic:=[y(infinity) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=2*x*D[y[x],x]-y[x]==1-2/Sqrt[x]; ic={y[Infinity]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) - y(x) - 1 + 2/sqrt(x),0) ics = {y(oo): -1} dsolve(ode,func=y(x),ics=ics)
ValueError : Couldnt solve for initial conditions