Internal
problem
ID
[18063]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
6.
Linear
equations
of
the
first
order.
The
Bernoulli
equation.
Exercises
page
54
Problem
number
:
153
Date
solved
:
Thursday, October 02, 2025 at 02:36:43 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=x^2*diff(y(x),x)+y(x) = (x^2+1)*exp(x); ic:=[y(-infinity) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],x]+y[x]==(x^2+1)*Exp[x]; ic={y[-Infinity]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - (x**2 + 1)*exp(x) + y(x),0) ics = {y(-inf): 1} dsolve(ode,func=y(x),ics=ics)