69.7.20 problem 195

Internal problem ID [18100]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 7, Total differential equations. The integrating factor. Exercises page 61
Problem number : 195
Date solved : Thursday, October 02, 2025 at 02:42:11 PM
CAS classification : [_rational]

\begin{align*} 2 x y^{2}-3 y^{3}+\left (7-3 x y^{2}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 65
ode:=2*x*y(x)^2-3*y(x)^3+(7-3*x*y(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{2}+c_1 +\sqrt {x^{4}+2 c_1 \,x^{2}+c_1^{2}-84 x}}{6 x} \\ y &= \frac {x^{2}+c_1 -\sqrt {x^{4}+2 c_1 \,x^{2}+c_1^{2}-84 x}}{6 x} \\ \end{align*}
Mathematica. Time used: 0.256 (sec). Leaf size: 86
ode=( 2*x*y[x]^2-3*y[x]^3)+( 7-3*x*y[x]^2 )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^2-\sqrt {x^4+2 c_1 x^2-84 x+c_1{}^2}+c_1}{6 x}\\ y(x)&\to \frac {x^2+\sqrt {x^4+2 c_1 x^2-84 x+c_1{}^2}+c_1}{6 x}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 1.844 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + (-3*x*y(x)**2 + 7)*Derivative(y(x), x) - 3*y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + 2 x^{2} - \sqrt {C_{1}^{2} + 4 C_{1} x^{2} + 4 x^{4} - 336 x}}{12 x} \]