Internal
problem
ID
[18101]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
7,
Total
differential
equations.
The
integrating
factor.
Exercises
page
61
Problem
number
:
196
Date
solved
:
Thursday, October 02, 2025 at 02:42:13 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=3*y(x)^2-x+(2*y(x)^3-6*x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 3*y[x]^2-x)+( 2*y[x]^3-6*x*y[x] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + (-6*x*y(x) + 2*y(x)**3)*Derivative(y(x), x) + 3*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)