Internal
problem
ID
[18136]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
9.
The
Riccati
equation.
Exercises
page
75
Problem
number
:
233
Date
solved
:
Thursday, October 02, 2025 at 02:54:11 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x)+y(x)^2-2*y(x)*sin(x)+sin(x)^2-cos(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]+y[x]^2-2*y[x]*Sin[x]+Sin[x]^2-Cos[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)**2 - 2*y(x)*sin(x) + sin(x)**2 - cos(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)