Internal
problem
ID
[18137]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
9.
The
Riccati
equation.
Exercises
page
75
Problem
number
:
234
Date
solved
:
Thursday, October 02, 2025 at 03:01:58 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Riccati]
ode:=x*diff(y(x),x)-y(x)^2+(2*x+1)*y(x) = x^2+2*x; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]^2+(2*x+1)*y[x]==x^2+2*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 + x*Derivative(y(x), x) - 2*x + (2*x + 1)*y(x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)