Internal
problem
ID
[18366]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Superposition
principle.
Exercises
page
137
Problem
number
:
580
Date
solved
:
Thursday, October 02, 2025 at 03:10:59 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 1+2*cos(x)+cos(2*x)-sin(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+2*D[y[x],x]+y[x]==1+2*Cos[x]+Cos[2*x]-Sin[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + sin(2*x) - 2*cos(x) - cos(2*x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)