69.17.31 problem 581

Internal problem ID [18367]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137
Problem number : 581
Date solved : Thursday, October 02, 2025 at 03:11:00 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y^{\prime }+y+1&=\sin \left (x \right )+x +x^{2} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 42
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x)+1 = sin(x)+x+x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) c_2 +{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) c_1 -2+x^{2}-\cos \left (x \right )-x \]
Mathematica. Time used: 0.513 (sec). Leaf size: 156
ode=D[y[x],{x,2}]+D[y[x],x]+y[x]+1==Sin[x]+x+x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x/2} \left (\cos \left (\frac {\sqrt {3} x}{2}\right ) \int _1^x-\frac {2 e^{\frac {K[2]}{2}} \left (K[2]^2+K[2]+\sin (K[2])-1\right ) \sin \left (\frac {1}{2} \sqrt {3} K[2]\right )}{\sqrt {3}}dK[2]+\sin \left (\frac {\sqrt {3} x}{2}\right ) \int _1^x\frac {2 e^{\frac {K[1]}{2}} \cos \left (\frac {1}{2} \sqrt {3} K[1]\right ) \left (K[1]^2+K[1]+\sin (K[1])-1\right )}{\sqrt {3}}dK[1]+c_2 \cos \left (\frac {\sqrt {3} x}{2}\right )+c_1 \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \end{align*}
Sympy. Time used: 0.121 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - x + y(x) - sin(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} - x + \left (C_{1} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} - \cos {\left (x \right )} - 2 \]