Internal
problem
ID
[18367]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Superposition
principle.
Exercises
page
137
Problem
number
:
581
Date
solved
:
Thursday, October 02, 2025 at 03:11:00 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+diff(y(x),x)+y(x)+1 = sin(x)+x+x^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]+y[x]+1==Sin[x]+x+x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 - x + y(x) - sin(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)