Internal
problem
ID
[18399]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
613
Date
solved
:
Friday, October 03, 2025 at 07:32:26 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+3*y(x) = 8*exp(x)+9; ic:=[y(-infinity) = 3]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+4*D[y[x],x]+3*y[x]==8*Exp[x]+9; ic={y[-Infinity]==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*y(x) - 8*exp(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 9,0) ics = {y(-inf): 3} dsolve(ode,func=y(x),ics=ics)