Internal
problem
ID
[18400]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Initial
value
problem.
Exercises
page
140
Problem
number
:
614
Date
solved
:
Thursday, October 02, 2025 at 03:11:24 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-5*y(x) = 1; ic:=[y(infinity) = -1/5]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-D[y[x],x]-5*y[x]==1; ic={y[Infinity]==-1/5}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-5*y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) ics = {y(oo): -1/5} dsolve(ode,func=y(x),ics=ics)