70.11.6 problem 6

Internal problem ID [18837]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.1 (Definitions and examples). Problems at page 214
Problem number : 6
Date solved : Thursday, October 02, 2025 at 03:31:31 PM
CAS classification : unknown

\begin{align*} y^{\prime \prime }-y t&=\frac {1}{\pi } \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 90
ode:=diff(diff(y(t),t),t)-t*y(t) = 1/Pi; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {4 t \pi \left (-3^{{5}/{6}} \operatorname {AiryAi}\left (t \right )+3^{{1}/{3}} \operatorname {AiryBi}\left (t \right )\right ) \operatorname {hypergeom}\left (\left [\frac {1}{3}\right ], \left [\frac {2}{3}, \frac {4}{3}\right ], \frac {t^{3}}{9}\right )-3 \left (t^{2} \Gamma \left (\frac {2}{3}\right ) \left (3^{{2}/{3}} \operatorname {AiryAi}\left (t \right )+3^{{1}/{6}} \operatorname {AiryBi}\left (t \right )\right ) \operatorname {hypergeom}\left (\left [\frac {2}{3}\right ], \left [\frac {4}{3}, \frac {5}{3}\right ], \frac {t^{3}}{9}\right )-4 \pi \left (\operatorname {AiryAi}\left (t \right ) c_2 +\operatorname {AiryBi}\left (t \right ) c_1 \right )\right ) \Gamma \left (\frac {2}{3}\right )}{12 \pi \Gamma \left (\frac {2}{3}\right )} \]
Mathematica. Time used: 0.023 (sec). Leaf size: 44
ode=D[y[t],{t,2}]-t*y[t]==1/Pi; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \operatorname {AiryBi}(t) \int _1^t\operatorname {AiryAi}(K[2])dK[2]+\operatorname {AiryAi}(t) \int _1^t-\operatorname {AiryBi}(K[1])dK[1]+c_1 \operatorname {AiryAi}(t)+c_2 \operatorname {AiryBi}(t) \end{align*}
Sympy. Time used: 0.035 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*y(t) + Derivative(y(t), (t, 2)) - 1/pi,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} Ai\left (t\right ) + C_{2} Bi\left (t\right ) \]