Internal
problem
ID
[18838]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.1
(Definitions
and
examples).
Problems
at
page
214
Problem
number
:
7
Date
solved
:
Thursday, October 02, 2025 at 03:31:31 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=a*x^2*diff(diff(y(x),x),x)+b*x*diff(y(x),x)+c*y(x) = d; dsolve(ode,y(x), singsol=all);
ode=a*x^2*D[y[x],{x,2}]+b*x*D[y[x],x]+c*y[x]==d; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") y = Function("y") ode = Eq(a*x**2*Derivative(y(x), (x, 2)) + b*x*Derivative(y(x), x) + c*y(x) - d,0) ics = {} dsolve(ode,func=y(x),ics=ics)