Internal
problem
ID
[19390]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
7
(Homogeneous
Equations).
Problems
at
page
67
Problem
number
:
1
(a)
Date
solved
:
Thursday, October 02, 2025 at 04:20:17 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^2-2*y(x)^2+x*y(x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-2*y[x]^2)+x*y[x]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2 + x*y(x)*Derivative(y(x), x) - 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)