Internal
problem
ID
[19391]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
7
(Homogeneous
Equations).
Problems
at
page
67
Problem
number
:
1
(b)
Date
solved
:
Thursday, October 02, 2025 at 04:21:34 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^2*diff(y(x),x)-3*x*y(x)-2*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]-3*x*y[x]-2*y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - 3*x*y(x) - 2*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)