2.7.23 problem 39

Internal problem ID [829]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 39
Date solved : Tuesday, September 30, 2025 at 04:15:53 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }+4 y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=4*diff(diff(y(x),x),x)+4*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x}{2}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.008 (sec). Leaf size: 20
ode=4*D[y[x],{x,2}]+4*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x/2} (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.118 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 4*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- \frac {x}{2}} \]