2.7.24 problem 40

Internal problem ID [830]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 40
Date solved : Tuesday, September 30, 2025 at 04:15:54 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 9 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=9*diff(diff(y(x),x),x)-12*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {2 x}{3}} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.009 (sec). Leaf size: 20
ode=9*D[y[x],{x,2}]-12*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{2 x/3} (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.123 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - 12*Derivative(y(x), x) + 9*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{\frac {2 x}{3}} \]