75.4.6 problem 6

Internal problem ID [19945]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 48
Problem number : 6
Date solved : Thursday, October 02, 2025 at 05:04:23 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 24
ode:=diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)+diff(y(x),x)-5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{3 x}+c_2 \sin \left (x \right )+c_3 \cos \left (x \right )\right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode=D[y[x],{x,3}]+3*D[y[x],{x,2}]+D[y[x],x]-5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (c_3 e^{3 x}+c_2 \cos (x)+c_1 \sin (x)\right ) \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-5*y(x) + Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + \left (C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )}\right ) e^{- 2 x} \]