75.4.7 problem 7

Internal problem ID [19946]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 48
Problem number : 7
Date solved : Thursday, October 02, 2025 at 05:04:23 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=2*diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+2*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-\frac {x}{2}}+c_2 \,{\mathrm e}^{x} \sin \left (x \right )+c_3 \,{\mathrm e}^{x} \cos \left (x \right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 32
ode=2*D[y[x],{x,3}]-3*D[y[x],{x,2}]+2*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_3 e^{-x/2}+c_2 e^x \cos (x)+c_1 e^x \sin (x) \end{align*}
Sympy. Time used: 0.124 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) + 2*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- \frac {x}{2}} + \left (C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )}\right ) e^{x} \]