75.4.8 problem 8

Internal problem ID [19947]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 48
Problem number : 8
Date solved : Thursday, October 02, 2025 at 05:04:23 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-x}+c_2 \,{\mathrm e}^{x}+c_3 \sin \left (x \right )+c_4 \cos \left (x \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 30
ode=D[y[x],{x,4}]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^x+c_3 e^{-x}+c_2 \cos (x)+c_4 \sin (x) \end{align*}
Sympy. Time used: 0.035 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{x} + C_{3} \sin {\left (x \right )} + C_{4} \cos {\left (x \right )} \]