Internal
problem
ID
[20326]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
XI.
Ordinary
differential
equations
with
more
than
two
variables.
End
of
chapter
problems
at
page
143
Problem
number
:
Ex.
1
Date
solved
:
Thursday, October 02, 2025 at 05:41:39 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t)+2*diff(y(t),t)-2*x(t)+2*y(t) = 3*exp(t), 3*diff(x(t),t)+diff(y(t),t)+2*x(t)+y(t) = 4*exp(2*t)]; dsolve(ode);
ode={D[x[t],t]+2*D[y[t],t]-2*x[t]+2*y[t]==3*Exp[t],3*D[x[t],t]+D[y[t],t]+2*x[t]+y[t]==4*Exp[2*t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) + 2*y(t) - 3*exp(t) + Derivative(x(t), t) + 2*Derivative(y(t), t),0),Eq(2*x(t) + y(t) - 4*exp(2*t) + 3*Derivative(x(t), t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)