Internal
problem
ID
[20327]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
XI.
Ordinary
differential
equations
with
more
than
two
variables.
End
of
chapter
problems
at
page
143
Problem
number
:
Ex.
2
Date
solved
:
Thursday, October 02, 2025 at 05:41:40 PM
CAS
classification
:
system_of_ODEs
ode:=[4*diff(x(t),t)+9*diff(y(t),t)+2*x(t)+31*y(t) = exp(t), 3*diff(x(t),t)+7*diff(y(t),t)+x(t)+24*y(t) = 3]; dsolve(ode);
ode={4*D[x[t],t]+9*D[y[t],t]+2*x[t]+31*y[t]==Exp[t],3*D[x[t],t]+7*D[y[t],t]+x[t]+24*y[t]==3}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(2*x(t) + 31*y(t) - exp(t) + 4*Derivative(x(t), t) + 9*Derivative(y(t), t),0),Eq(x(t) + 24*y(t) + 3*Derivative(x(t), t) + 7*Derivative(y(t), t) - 3,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)