78.3.27 problem 7.d(2)

Internal problem ID [21023]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 4, Series solutions. Problems section 4.9
Problem number : 7.d(2)
Date solved : Thursday, October 02, 2025 at 07:01:31 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.023 (sec). Leaf size: 34
Order:=6; 
ode:=4*x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(4*x^2-1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 x \left (1-\frac {1}{6} x^{2}+\frac {1}{120} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 58
ode=4*x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+(4*x^2-1)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^{7/2}}{24}-\frac {x^{3/2}}{2}+\frac {1}{\sqrt {x}}\right )+c_2 \left (\frac {x^{9/2}}{120}-\frac {x^{5/2}}{6}+\sqrt {x}\right ) \]
Sympy. Time used: 0.329 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + (4*x**2 - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \sqrt {x} \left (\frac {x^{4}}{120} - \frac {x^{2}}{6} + 1\right ) + \frac {C_{1} \left (\frac {x^{4}}{24} - \frac {x^{2}}{2} + 1\right )}{\sqrt {x}} + O\left (x^{6}\right ) \]