78.3.28 problem 7.e

Internal problem ID [21024]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 4, Series solutions. Problems section 4.9
Problem number : 7.e
Date solved : Thursday, October 02, 2025 at 07:01:32 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} 2 x \left (1+x \right ) y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.031 (sec). Leaf size: 36
Order:=6; 
ode:=2*x*(1+x)*diff(diff(y(x),x),x)+3*(1+x)*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \left (1+x +\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}}+c_2 \left (1+\frac {1}{3} x -\frac {1}{15} x^{2}+\frac {1}{35} x^{3}-\frac {1}{63} x^{4}+\frac {1}{99} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 53
ode=2*x*(x+1)*D[y[x],{x,2}]+3*(x+1)*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{99}-\frac {x^4}{63}+\frac {x^3}{35}-\frac {x^2}{15}+\frac {x}{3}+1\right )+\frac {c_2 (x+1)}{\sqrt {x}} \]
Sympy. Time used: 0.406 (sec). Leaf size: 80
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*(x + 1)*Derivative(y(x), (x, 2)) + (3*x + 3)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {4 x^{5}}{155925} + \frac {2 x^{4}}{2835} + \frac {4 x^{3}}{315} + \frac {2 x^{2}}{15} + \frac {2 x}{3} + 1\right ) + \frac {C_{1} \left (\frac {4 x^{5}}{14175} + \frac {2 x^{4}}{315} + \frac {4 x^{3}}{45} + \frac {2 x^{2}}{3} + 2 x + 1\right )}{\sqrt {x}} + O\left (x^{6}\right ) \]