Internal
problem
ID
[21387]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
9.
Solutions
by
infinite
series
and
Bessel
functions.
Excercise
10.6
at
page
223
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 07:30:40 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=4*t^2*diff(diff(x(t),t),t)+4*t*diff(x(t),t)-x(t) = 0; dsolve(ode,x(t),type='series',t=0);
ode=4*t^2*D[x[t],{t,2}]+4*t*D[x[t],t]-x[t]==0; ic={}; AsymptoticDSolveValue[{ode,ic},x[t],{t,0,5}]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(4*t**2*Derivative(x(t), (t, 2)) + 4*t*Derivative(x(t), t) - x(t),0) ics = {} dsolve(ode,func=x(t),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)