80.9.6 problem 6

Internal problem ID [21388]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 9. Solutions by infinite series and Bessel functions. Excercise 10.6 at page 223
Problem number : 6
Date solved : Thursday, October 02, 2025 at 07:30:41 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} t^{2} x^{\prime \prime }+3 x^{\prime } t&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 24
Order:=6; 
ode:=t^2*diff(diff(x(t),t),t)+3*t*diff(x(t),t) = 0; 
dsolve(ode,x(t),type='series',t=0);
 
\[ x = c_1 \left (1+\operatorname {O}\left (t^{6}\right )\right )+\frac {c_2 \left (-2+\operatorname {O}\left (t^{6}\right )\right )}{t^{2}} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 12
ode=t^2*D[x[t],{t,2}]+3*t*D[x[t],t]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},x[t],{t,0,5}]
 
\[ x(t)\to \frac {c_1}{t^2}+c_2 \]
Sympy. Time used: 0.210 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(t**2*Derivative(x(t), (t, 2)) + 3*t*Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ x{\left (t \right )} = \frac {C_{2}}{t^{2}} + C_{1} + O\left (t^{6}\right ) \]