Internal
problem
ID
[21420]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
12.
Stability
theory.
Excercise
12.6
at
page
270
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 07:31:05 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = a*x__1(t), diff(x__2(t),t) = a*x__2(t)+x__3(t), diff(x__3(t),t) = x__2(t)+a*x__3(t)]; dsolve(ode);
ode={D[x1[t],t]==a*x1[t],D[x2[t],t]==a*x2[t]+x3[t],D[x3[t],t]==x2[t]+a*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") x1 = Function("x1") x2 = Function("x2") x3 = Function("x3") ode=[Eq(-a*x1(t) + Derivative(x1(t), t),0),Eq(-a*x2(t) - x3(t) + Derivative(x2(t), t),0),Eq(-a*x3(t) - x2(t) + Derivative(x3(t), t),0)] ics = {} dsolve(ode,func=[x1(t),x2(t),x3(t)],ics=ics)