80.11.13 problem 13

Internal problem ID [21421]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 12. Stability theory. Excercise 12.6 at page 270
Problem number : 13
Date solved : Thursday, October 02, 2025 at 07:31:05 PM
CAS classification : system_of_ODEs

\begin{align*} x_{1}^{\prime }\left (t \right )&=x_{2} \left (t \right )+x_{4} \left (t \right )\\ x_{2}^{\prime }\left (t \right )&=-x_{2} \left (t \right )+x_{3} \left (t \right )\\ x_{3}^{\prime }\left (t \right )&=x_{2} \left (t \right )+x_{3} \left (t \right )\\ x_{4}^{\prime }\left (t \right )&=x_{1} \left (t \right )-x_{4} \left (t \right ) \end{align*}
Maple. Time used: 0.159 (sec). Leaf size: 766
ode:=[diff(x__1(t),t) = x__2(t)+x__4(t), diff(x__2(t),t) = -x__2(t)+x__3(t), diff(x__3(t),t) = x__2(t)+x__3(t), diff(x__4(t),t) = x__1(t)-x__4(t)]; 
dsolve(ode);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica. Time used: 0.024 (sec). Leaf size: 566
ode={D[x1[t],t]==x2[t]+x4[t],D[x2[t],t]==-x2[t]+x3[t],D[x3[t],t]==x2[t]+x3[t],D[x4[t],t]==x1[t]-x4[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)&\to \frac {1}{20} e^{-\frac {1}{2} \left (1+2 \sqrt {2}+\sqrt {5}\right ) t} \left (5 \left (\left (2+\sqrt {2}\right ) c_2-\sqrt {2} c_3\right ) e^{\frac {1}{2} \left (1+\sqrt {5}\right ) t}+\left (5 \sqrt {2} c_3-5 \left (\sqrt {2}-2\right ) c_2\right ) e^{\frac {1}{2} \left (1+4 \sqrt {2}+\sqrt {5}\right ) t}+2 \left (\left (5+\sqrt {5}\right ) c_1+\left (3 \sqrt {5}-5\right ) c_2+2 \sqrt {5} (c_4-c_3)\right ) e^{\left (\sqrt {2}+\sqrt {5}\right ) t}-2 \left (\left (\sqrt {5}-5\right ) c_1+\left (5+3 \sqrt {5}\right ) c_2+2 \sqrt {5} (c_4-c_3)\right ) e^{\sqrt {2} t}\right )\\ \text {x2}(t)&\to \frac {1}{4} e^{-\sqrt {2} t} \left (c_2 \left (-\left (\sqrt {2}-2\right ) e^{2 \sqrt {2} t}+2+\sqrt {2}\right )+\sqrt {2} c_3 \left (e^{2 \sqrt {2} t}-1\right )\right )\\ \text {x3}(t)&\to \frac {1}{4} e^{-\sqrt {2} t} \left (\sqrt {2} c_2 \left (e^{2 \sqrt {2} t}-1\right )+c_3 \left (\left (2+\sqrt {2}\right ) e^{2 \sqrt {2} t}+2-\sqrt {2}\right )\right )\\ \text {x4}(t)&\to \frac {1}{20} e^{-\frac {1}{2} \left (1+2 \sqrt {2}+\sqrt {5}\right ) t} \left (5 \left (\left (3 \sqrt {2}-4\right ) c_2-\left (\sqrt {2}-2\right ) c_3\right ) e^{\frac {1}{2} \left (1+4 \sqrt {2}+\sqrt {5}\right ) t}-5 \left (\left (4+3 \sqrt {2}\right ) c_2-\left (2+\sqrt {2}\right ) c_3\right ) e^{\frac {1}{2} \left (1+\sqrt {5}\right ) t}+2 \left (2 \sqrt {5} c_1+\left (10-4 \sqrt {5}\right ) c_2+\left (\sqrt {5}-5\right ) (c_3-c_4)\right ) e^{\left (\sqrt {2}+\sqrt {5}\right ) t}-2 \left (2 \sqrt {5} c_1-2 \left (5+2 \sqrt {5}\right ) c_2+\left (5+\sqrt {5}\right ) (c_3-c_4)\right ) e^{\sqrt {2} t}\right ) \end{align*}
Sympy. Time used: 0.282 (sec). Leaf size: 204
from sympy import * 
t = symbols("t") 
x1 = Function("x1") 
x2 = Function("x2") 
x3 = Function("x3") 
x4 = Function("x4") 
ode=[Eq(-x2(t) - x4(t) + Derivative(x1(t), t),0),Eq(x2(t) - x3(t) + Derivative(x2(t), t),0),Eq(-x2(t) - x3(t) + Derivative(x3(t), t),0),Eq(-x1(t) + x4(t) + Derivative(x4(t), t),0)] 
ics = {} 
dsolve(ode,func=[x1(t),x2(t),x3(t),x4(t)],ics=ics)
 
\[ \left [ x_{1}{\left (t \right )} = \frac {C_{1} \left (1 - \sqrt {5}\right ) e^{- \frac {t \left (1 + \sqrt {5}\right )}{2}}}{2} + \frac {C_{2} \left (1 + \sqrt {5}\right ) e^{- \frac {t \left (1 - \sqrt {5}\right )}{2}}}{2} + C_{3} \left (1 - \sqrt {2}\right ) e^{- \sqrt {2} t} + C_{4} \left (1 + \sqrt {2}\right ) e^{\sqrt {2} t}, \ x_{2}{\left (t \right )} = C_{3} \left (1 - \sqrt {2}\right ) e^{- \sqrt {2} t} + C_{4} \left (1 + \sqrt {2}\right ) e^{\sqrt {2} t}, \ x_{3}{\left (t \right )} = C_{3} \left (3 - 2 \sqrt {2}\right ) e^{- \sqrt {2} t} + C_{4} \left (2 \sqrt {2} + 3\right ) e^{\sqrt {2} t}, \ x_{4}{\left (t \right )} = C_{1} e^{- \frac {t \left (1 + \sqrt {5}\right )}{2}} + C_{2} e^{- \frac {t \left (1 - \sqrt {5}\right )}{2}} + C_{3} e^{- \sqrt {2} t} + C_{4} e^{\sqrt {2} t}\right ] \]